RegulonDB RegulonDB 11.2: Gene Form
   

zntA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

zntA yhhN tusA ZntR terminator TSS_4075 TSS_4075 zntAp zntAp TSS_4073 (cluster) TSS_4073 (cluster) yhhMp1 yhhMp1

Gene      
Name: zntA    Texpresso search in the literature
Synonym(s): ECK3453, EG12215, b3469, yhhO
Genome position(nucleotides): 3606451 --> 3608649
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
58.25


Product      
Name: Zn2+/Cd2+/Pb2+ exporting P-type ATPase
Synonym(s): YhhO, ZntA
Sequence: Get amino acid sequence Fasta Format
Cellular location: inner membrane
Molecular weight: 76.84
Isoelectric point: 5.753
Motif(s):
 
Type Positions Sequence Comment
49 -> 113 RYSWKVSGMDCAACARKVENAVRQLAGVNQVQVLFATEKLVVDADNDIRAQVESALQKAGYSLRD UniProt: HMA.
53 -> 109 KVSGMDCAACARKVENAVRQLAGVNQVQVLFATEKLVVDADNDIRAQVESALQKAGY
59 -> 62 CAAC UniProt: Reduces the ATPase activity by 50%. Reduces level of phosphorylation..
125 -> 145 LKENLPLITLIVMMAISWGLE UniProt: Helical.
147 -> 167 FNHPFGQLAFIATTLVGLYPI UniProt: Helical.

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.3 - energy metabolism, carbon --> 1.3.8 - ATP proton motive force interconversion
  4 - transport --> 4.3 - Primary Active Transporters --> 4.3.A - Pyrophosphate Bond (ATP; GTP; P2) Hydrolysis-driven Active Transporters --> 4.3.A.3 - The P-type ATPase (P-ATPase) Superfamily
  5 - cell processes --> 5.6 - protection --> 5.6.2 - detoxification
  6 - cell structure --> 6.1 - membrane
Gene Ontology Terms (GO)  
cellular_component GO:0016020 - membrane
GO:0005886 - plasma membrane
GO:0005887 - integral component of plasma membrane
GO:0016021 - integral component of membrane
molecular_function GO:0016887 - ATP hydrolysis activity
GO:0046872 - metal ion binding
GO:0005385 - zinc ion transmembrane transporter activity
GO:0015086 - cadmium ion transmembrane transporter activity
GO:0000166 - nucleotide binding
GO:0005524 - ATP binding
GO:0008551 - P-type cadmium transporter activity
GO:0016463 - P-type zinc transporter activity
GO:0019829 - ATPase-coupled cation transmembrane transporter activity
GO:0015094 - lead ion transmembrane transporter activity
biological_process GO:0006811 - ion transport
GO:0006812 - cation transport
GO:0006829 - zinc ion transport
GO:0006882 - cellular zinc ion homeostasis
GO:0046686 - response to cadmium ion
GO:0010043 - response to zinc ion
GO:0010312 - detoxification of zinc ion
GO:0071577 - zinc ion transmembrane transport
GO:0010288 - response to lead ion
GO:0015692 - lead ion transport
GO:0070574 - cadmium ion transmembrane transport
Note(s): Note(s): ...[more].
Reference(s): [1] Gallenito MJ., et al., 2019
[2] Gatti D., et al., 2000
[3] Graham G., et al., 2020
[4] Hou ZJ., et al., 2001
[5] Liu J., et al., 2006
[6] Mitra B., et al., 2001
[7] Okkeri J., et al., 2002
[8] Okkeri J., et al., 1999
[9] Okkeri J., et al., 2004
[10] Yamamoto K., et al., 2005
[11] Zhitnitsky D., et al., 2014
External database links:  
ALPHAFOLD:
P37617
DIP:
DIP-12947N
ECOCYC:
YHHO-MONOMER
ECOLIWIKI:
b3469
INTERPRO:
IPR027256
INTERPRO:
IPR044492
INTERPRO:
IPR036412
INTERPRO:
IPR036163
INTERPRO:
IPR023299
INTERPRO:
IPR023298
INTERPRO:
IPR023214
INTERPRO:
IPR018303
INTERPRO:
IPR017969
INTERPRO:
IPR008250
INTERPRO:
IPR006121
INTERPRO:
IPR001757
MODBASE:
P37617
PANTHER:
PTHR24093:SF126
PDB:
1MWY
PDB:
1MWZ
PFAM:
PF00122
PFAM:
PF00403
PFAM:
PF00702
PRIDE:
P37617
PRINTS:
PR00120
PRODB:
PRO_000024249
PROSITE:
PS00154
PROSITE:
PS50846
PROSITE:
PS01047
REFSEQ:
NP_417926
SMR:
P37617
SWISSMODEL:
P37617
UNIPROT:
P37617


Operon      
Name: zntA         
Operon arrangement:
Transcription unit        Promoter
zntA


Transcriptional Regulation      
Display Regulation             
Activated by: ZntR


RNA cis-regulatory element    
Attenuation: Translational


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter yhhMp1 3605794 reverse nd [COMP-AINF] [12]
  promoter TSS_4073 (cluster) 3606028 forward nd [RS-EPT-CBR] [13]
  promoter TSS_4075 3606434 forward nd [RS-EPT-CBR] [13]


Evidence    

 [COMP-AINF] Inferred computationally without human oversight

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Gallenito MJ., Irvine GW., Zhang L., Meloni G., 2019, Coordination promiscuity guarantees metal substrate selection in transmembrane primary-active Zn2+ pumps., Chem Commun (Camb) 55(73):10844-10847

 [2] Gatti D., Mitra B., Rosen BP., 2000, Escherichia coli soft metal ion-translocating ATPases., J Biol Chem 275(44):34009-12

 [3] Graham G., Csicsery N., Stasiowski E., Thouvenin G., Mather WH., Ferry M., Cookson S., Hasty J., 2020, Genome-scale transcriptional dynamics and environmental biosensing., Proc Natl Acad Sci U S A 117(6):3301-3306

 [4] Hou ZJ., Narindrasorasak S., Bhushan B., Sarkar B., Mitra B., 2001, Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli., J Biol Chem 276(44):40858-63

 [5] Liu J., Dutta SJ., Stemmler AJ., Mitra B., 2006, Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity., Biochemistry 45(3):763-72

 [6] Mitra B., Sharma R., 2001, The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function., Biochemistry 40(25):7694-9

 [7] Okkeri J., Bencomo E., Pietila M., Haltia T., 2002, Introducing Wilson disease mutations into the zinc-transporting P-type ATPase of Escherichia coli. The mutation P634L in the 'hinge' motif (GDGXNDXP) perturbs the formation of the E2P state., Eur J Biochem 269(5):1579-86

 [8] Okkeri J., Haltia T., 1999, Expression and mutagenesis of ZntA, a zinc-transporting P-type ATPase from Escherichia coli., Biochemistry 38(42):14109-16

 [9] Okkeri J., Laakkonen L., Haltia T., 2004, The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP., Biochem J 377(Pt 1):95-105

 [10] Yamamoto K., Ishihama A., 2005, Transcriptional response of Escherichia coli to external zinc., J Bacteriol 187(18):6333-40

 [11] Zhitnitsky D., Lewinson O., 2014, Identification of functionally important conserved trans-membrane residues of bacterial PIB -type ATPases., Mol Microbiol 91(4):777-89

 [12] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78

 [13] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB