RegulonDB RegulonDB 11.2:Regulon Page
   

AlaS DNA-binding transcriptional repressor

Synonyms: AlaS-L-alanine, AlaS
Summary:
Alanine—tRNA ligase (AlaRS) is a member of the family of aminoacyl-tRNA synthetases, which interpret the genetic code by covalently linking amino acids to their specific tRNA molecules. The reaction is driven by ATP hydrolysis. AlaRS belongs to the Class IIC aminoacyl tRNA synthetases [3, 4, 5]. AlaRS was seen as a homotetramer in solution [6]. Later experiments determined that AlaRS is homodimeric in solution [7] and can exist in an equilibrium between a homodimeric and a homodecameric state, depending on temperature [8, 9]. The enzyme contains one molecule of zinc per AlaS polypeptide [10]; zinc binds cooperatively and induces a conformational change in AlaRS [11, 12].
Read more >


Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
AlaS Non-Functional   Apo [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [1]
AlaS-L-alanine Functional Allosteric Holo [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [1]
Evolutionary Family: Class II aminoacyl_tRNA synthetase
TFBs length: 7
TFBs symmetry: inverted-repeat
Connectivity class: Local Regulator
Gene name: alaS
  Genome position: 2819381-2822011
  Length: 2631 bp / 876 aa
Operon name: alaS
TU(s) encoding the TF:
Transcription unit        Promoter
alaS
alaSp


Regulon       
Regulated gene(s) alaS
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
amino acid -activation (1)
repressor (1)
Regulated operon(s) alaS
First gene in the operon(s) alaS
Simple and complex regulons AlaS
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)
[AlaS,-](1)


Transcription factor regulation    


Transcription factor binding sites (TFBSs) arrangements
      

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence LeftPos RightPos Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
  AlaS-L-alanine repressor alaSp nd -6.5 -85.5 alaS
ttacttcccaGTCAAGAAAACTTATCTTATTCCCACTTTTCAGTTaccagcccgg
2822080 2822114 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS], [EXP-IMP-SITE-MUTATION] C [1], [1], [2], [2]


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
Promoter-target gene evolutionary conservation




Reference(s)    

 [1] Putney SD., Schimmel P., 1981, An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription., Nature 291(5817):632-5

 [2] Banerjee B., Ganguli S., Banerjee R., 2019, Biophysical characterization of interaction between E. coli alanyl-tRNA synethase with its promoter DNA., Protein Pept Lett

 [3] Eriani G, Delarue M, Poch O, Gangloff J, Moras D, 1990, Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs., Nature, 347(6289):203 10.1038/347203a0

 [4] Cusack S, Härtlein M, Leberman R, 1991, Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases., Nucleic Acids Res, 19(13):3489 10.1093/nar/19.13.3489

 [5] Perona JJ, Hadd A, 2012, Structural diversity and protein engineering of the aminoacyl-tRNA synthetases., Biochemistry, 51(44):8705 10.1021/bi301180x

 [6] Putney SD, Sauer RT, Schimmel PR, 1981, Purification and properties of alanine tRNA synthetase from Escherichia coli A tetramer of identical subunits., J Biol Chem, 256(1):198 None

 [7] Dignam JD, Guo J, Griffith WP, Garbett NC, Holloway A, Mueser T, 2011, Allosteric interaction of nucleotides and tRNA(ala) with E. coli alanyl-tRNA synthetase., Biochemistry, 50(45):9886 10.1021/bi2012004

 [8] Sood SM, Slattery CW, Filley SJ, Wu MX, Hill KA, 1996, Further characterization of Escherichia coli alanyl-tRNA synthetase., Arch Biochem Biophys, 328(2):295 10.1006/abbi.1996.0176

 [9] Sood SM, Hill KA, Slattery CW, 1997, Stability of Escherichia coli alanyl-tRNA synthetase quaternary structure under increased pressure., Arch Biochem Biophys, 346(2):322 10.1006/abbi.1997.0326

 [10] Miller WT, Hill KA, Schimmel P, 1991, Evidence for a "cysteine-histidine box" metal-binding site in an Escherichia coli aminoacyl-tRNA synthetase., Biochemistry, 30(28):6970 10.1021/bi00242a023

 [11] Wu MX, Filley SJ, Hill KA, 1994, Cooperative binding of zinc to an aminoacyl-tRNA synthetase., Biochem Biophys Res Commun, 201(3):1079 10.1006/bbrc.1994.1815

 [12] Sood SM, Wu MX, Hill KA, Slattery CW, 1999, Characterization of zinc-depleted alanyl-tRNA synthetase from Escherichia coli: role of zinc., Arch Biochem Biophys, 368(2):380 10.1006/abbi.1999.1314

 [13] Miller WT, Schimmel P, 1992, A retroviral-like metal binding motif in an aminoacyl-tRNA synthetase is important for tRNA recognition., Proc Natl Acad Sci U S A, 89(6):2032 10.1073/pnas.89.6.2032

 [14] Park SJ, Schimmel P, 1988, Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA., J Biol Chem, 263(32):16527 None

 [15] Gabriel K, Schneider J, McClain WH, 1996, Functional evidence for indirect recognition of G.U in tRNA(Ala) by alanyl-tRNA synthetase., Science, 271(5246):195 10.1126/science.271.5246.195

 [16] McClain WH, Gabriel K, Schneider J, 1996, Specific function of a G.U wobble pair from an adjacent helical site in tRNA(Ala) during recognition by alanyl-tRNA synthetase., RNA, 2(2):105 None

 [17] McClain WH, Jou YY, Bhattacharya S, Gabriel K, Schneider J, 1999, The reliability of in vivo structure-function analysis of tRNA aminoacylation., J Mol Biol, 290(2):391 10.1006/jmbi.1999.2884

 [18] Pleiss JA, Wolfson AD, Uhlenbeck OC, 2000, Mapping contacts between Escherichia coli alanyl tRNA synthetase and 2' hydroxyls using a complete tRNA molecule., Biochemistry, 39(28):8250 10.1021/bi0001022

 [19] Wolfson AD, Uhlenbeck OC, 2002, Modulation of tRNAAla identity by inorganic pyrophosphatase., Proc Natl Acad Sci U S A, 99(9):5965 10.1073/pnas.092152799

 [20] Beuning PJ, Nagan MC, Cramer CJ, Musier-Forsyth K, Gelpí JL, Bashford D, 2002, Efficient aminoacylation of the tRNA(Ala) acceptor stem: dependence on the 2:71 base pair., RNA, 8(5):659 10.1017/s1355838202020277

 [21] Hou YM, Schimmel P, 1988, A simple structural feature is a major determinant of the identity of a transfer RNA., Nature, 333(6169):140 10.1038/333140a0

 [22] McClain WH, Foss K, 1988, Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end., Science, 240(4853):793 10.1126/science.2452483

 [23] McClain WH, Chen YM, Foss K, Schneider J, 1988, Association of transfer RNA acceptor identity with a helical irregularity., Science, 242(4886):1681 10.1126/science.2462282

 [24] Hou YM, Schimmel P, 1989, Modeling with in vitro kinetic parameters for the elaboration of transfer RNA identity in vivo., Biochemistry, 28(12):4942 10.1021/bi00438a005

 [25] Musier-Forsyth K, Schimmel P, 1992, Functional contacts of a transfer RNA synthetase with 2'-hydroxyl groups in the RNA minor groove., Nature, 357(6378):513 10.1038/357513a0

 [26] Beuning PJ, Yang F, Schimmel P, Musier-Forsyth K, 1997, Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase., Proc Natl Acad Sci U S A, 94(19):10150 10.1073/pnas.94.19.10150

 [27] Chang KY, Varani G, Bhattacharya S, Choi H, McClain WH, 1999, Correlation of deformability at a tRNA recognition site and aminoacylation specificity., Proc Natl Acad Sci U S A, 96(21):11764 10.1073/pnas.96.21.11764

 [28] Miller WT, Hou YM, Schimmel P, 1991, Mutant aminoacyl-tRNA synthetase that compensates for a mutation in the major identity determinant of its tRNA., Biochemistry, 30(10):2635 10.1021/bi00224a011

 [29] Buechter DD, Schimmel P, 1995, Minor groove recognition of the critical acceptor helix base pair by an appended module of a class II tRNA synthetase., Biochemistry, 34(18):6014 10.1021/bi00018a002

 [30] Shi JP, Francklyn C, Hill K, Schimmel P, 1990, A nucleotide that enhances the charging of RNA minihelix sequence variants with alanine., Biochemistry, 29(15):3621 10.1021/bi00467a005

 [31] Shi JP, Schimmel P, 1991, Aminoacylation of alanine minihelices. "Discriminator" base modulates transition state of single turnover reaction., J Biol Chem, 266(5):2705 None

 [32] Fischer AE, Beuning PJ, Musier-Forsyth K, 1999, Identification of discriminator base atomic groups that modulate the alanine aminoacylation reaction., J Biol Chem, 274(52):37093 10.1074/jbc.274.52.37093

 [33] Nagan MC, Beuning P, Musier-Forsyth K, Cramer CJ, 2000, Importance of discriminator base stacking interactions: molecular dynamics analysis of A73 microhelix(Ala) variants., Nucleic Acids Res, 28(13):2527 10.1093/nar/28.13.2527

 [34] Park SJ, Miller WT, Schimmel P, 1990, Synthetic peptide model of an essential region of an aminoacyl-tRNA synthetase., Biochemistry, 29(39):9212 10.1021/bi00491a015

 [35] Ribas de Pouplana L, Buechter D, Sardesai NY, Schimmel P, 1998, Functional analysis of peptide motif for RNA microhelix binding suggests new family of RNA-binding domains., EMBO J, 17(18):5449 10.1093/emboj/17.18.5449

 [36] Putney SD, Royal NJ, Neuman de Vegvar H, Herlihy WC, Biemann K, Schimmel P, 1981, Primary structure of a large aminoacyl-tRNA synthetase., Science, 213(4515):1497 10.1126/science.7025207

 [37] Jasin M, Regan L, Schimmel P, 1983, Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase., Nature, 306(5942):441 10.1038/306441a0

 [38] Jasin M, Regan L, Schimmel P, 1985, Two mutations in the dispensable part of alanine tRNA synthetase which affect the catalytic activity., J Biol Chem, 260(4):2226 None

 [39] Ho C, Jasin M, Schimmel P, 1985, Amino acid replacements that compensate for a large polypeptide deletion in an enzyme., Science, 229(4711):389 10.1126/science.3892692

 [40] Regan L, Bowie J, Schimmel P, 1987, Polypeptide sequences essential for RNA recognition by an enzyme., Science, 235(4796):1651 10.1126/science.2435005

 [41] Lu Y, Hill KA, 1994, The invariant arginine in motif 2 of Escherichia coli alanyl-tRNA synthetase is important for catalysis but not for substrate binding., J Biol Chem, 269(16):12137 None

 [42] Davis MW, Buechter DD, Schimmel P, 1994, Functional dissection of a predicted class-defining motif in a class II tRNA synthetase of unknown structure., Biochemistry, 33(33):9904 10.1021/bi00199a012

 [43] Wu MX, Filley SJ, Xiong J, Lee JJ, Hill KA, 1994, A cysteine in the C-terminal region of alanyl-tRNA synthetase is important for aminoacylation activity., Biochemistry, 33(40):12260 10.1021/bi00206a032

 [44] Shi JP, Musier-Forsyth K, Schimmel P, 1994, Region of a conserved sequence motif in a class II tRNA synthetase needed for transfer of an activated amino acid to an RNA substrate., Biochemistry, 33(17):5312 10.1021/bi00183a039

 [45] Hill K, Schimmel P, 1989, Evidence that the 3' end of a tRNA binds to a site in the adenylate synthesis domain of an aminoacyl-tRNA synthetase., Biochemistry, 28(6):2577 10.1021/bi00432a035

 [46] Filley SJ, Hill KA, 1993, Amino acid substitutions at position 73 in motif 2 of Escherichia coli alanyl-tRNA synthetase., Arch Biochem Biophys, 307(1):46 10.1006/abbi.1993.1558

 [47] Zhang CM, Perona JJ, Ryu K, Francklyn C, Hou YM, 2006, Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases., J Mol Biol, 361(2):300 10.1016/j.jmb.2006.06.015

 [48] Barends S, Wower J, Kraal B, 2000, Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli., Biochemistry, 39(10):2652 10.1021/bi992439d

 [49] Tsui WC, Fersht AR, 1981, Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli., Nucleic Acids Res, 9(18):4627 10.1093/nar/9.18.4627

 [50] Beebe K, Merriman E, Schimmel P, 2003, Structure-specific tRNA determinants for editing a mischarged amino acid., J Biol Chem, 278(46):45056 10.1074/jbc.M307080200

 [51] Guo M, Chong YE, Shapiro R, Beebe K, Yang XL, Schimmel P, 2009, Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma., Nature, 462(7274):808 10.1038/nature08612

 [52] Beebe K, Mock M, Merriman E, Schimmel P, 2008, Distinct domains of tRNA synthetase recognize the same base pair., Nature, 451(7174):90 10.1038/nature06454

 [53] Pasman Z, Robey-Bond S, Mirando AC, Smith GJ, Lague A, Francklyn CS, 2011, Substrate specificity and catalysis by the editing active site of Alanyl-tRNA synthetase from Escherichia coli., Biochemistry, 50(9):1474 10.1021/bi1013535

 [54] Novoa EM, Vargas-Rodriguez O, Lange S, Goto Y, Suga H, Musier-Forsyth K, Ribas de Pouplana L, 2015, Ancestral AlaX editing enzymes for control of genetic code fidelity are not tRNA-specific., J Biol Chem, 290(16):10495 10.1074/jbc.M115.640060

 [55] Pawar KI, Suma K, Seenivasan A, Kuncha SK, Routh SB, Kruparani SP, Sankaranarayanan R, 2017, Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS., Elife, 6(None):None 10.7554/eLife.24001

 [56] Jasin M, Regan L, Schimmel P, 1984, Dispensable pieces of an aminoacyl tRNA synthetase which activate the catalytic site., Cell, 36(4):1089 10.1016/0092-8674(84)90059-x

 [57] Guo M, Chong YE, Beebe K, Shapiro R, Yang XL, Schimmel P, 2009, The C-Ala domain brings together editing and aminoacylation functions on one tRNA., Science, 325(5941):744 10.1126/science.1174343

 [58] Banerjee B, Banerjee R, 2015, Urea Unfolding Study of E. coli Alanyl-tRNA Synthetase and Its Monomeric Variants Proves the Role of C-Terminal Domain in Stability., J Amino Acids, 2015(None):805681 10.1155/2015/805681

 [59] Jovanovic M, Lilic M, Janjusevic R, Jovanovic G, Savic DJ, Milija J, 1999, tRNA synthetase mutants of Escherichia coli K-12 are resistant to the gyrase inhibitor novobiocin., J Bacteriol, 181(9):2979 10.1128/JB.181.9.2979-2983.1999

 [60] Wittmann HG, Stöffler G, 1974, Altered S5 and S20 ribosomal proteins in revertants of an alanyl-tRNA synthetase mutant of Escherichia coli., Mol Gen Genet, 134(3):225 10.1007/BF00267717

 [61] Buckel P, Piepersberg W, Böck A, 1976, Suppression of temperature-sensitive aminoacyl-tRNA synthetase mutations by ribosomal mutations: a possible mechanism., Mol Gen Genet, 149(1):51 10.1007/BF00275960

 [62] Yao P., Poruri K., Martinis SA., Fox PL., 2014, Non-catalytic regulation of gene expression by aminoacyl-tRNA synthetases., Top Curr Chem 344:167-87

 [63] Guo M, Schimmel P, 2012, Structural analyses clarify the complex control of mistranslation by tRNA synthetases., Curr Opin Struct Biol, 22(1):119 10.1016/j.sbi.2011.11.008

 [64] Reynolds NM, Lazazzera BA, Ibba M, 2010, Cellular mechanisms that control mistranslation., Nat Rev Microbiol, 8(12):849 10.1038/nrmicro2472

 [65] Ataide SF, Ibba M, 2006, Small molecules: big players in the evolution of protein synthesis., ACS Chem Biol, 1(5):285 10.1021/cb600200k

 [66] Ibba M, Soll D, 2000, Aminoacyl-tRNA synthesis., Annu Rev Biochem, 69(None):617 10.1146/annurev.biochem.69.1.617

 [67] Hou YM, Francklyn C, Schimmel P, 1989, Molecular dissection of a transfer RNA and the basis for its identity., Trends Biochem Sci, 14(6):233 10.1016/0968-0004(89)90033-9

 [68] Miller WT, Schimmel P, 1992, A metal-binding motif implicated in RNA recognition by an aminoacyl-tRNA synthetase and by a retroviral gene product., Mol Microbiol, 6(10):1259 10.1111/j.1365-2958.1992.tb00846.x



RegulonDB