RegulonDB RegulonDB 11.2:Regulon Page
   

KdpE DNA-binding transcriptional activator

Synonyms: KdpE-phosphorylated, KdpE
Summary:
KdpE is a transcriptional regulator involved in the regulation of genes involved in a high-affinity potassium (K+) uptake system [5, 6, 7]. The genes of this system and their regulators are widely distributed among the gram-negative and gram-positive bacteria and archaea [5]. KdpE activates expression of the kdpFABC operon encoding the P-type ATPase KdpFABC, a high-affinity potassium transport system. KdpE belongs to the two-component system KdpD/KdpE [8]. The operon containing both genes, kdpE, encoding the response regulator, and kdpD, encoding the sensor kinase, is located next to and in the same direction as an operon (kdpFABC) regulated by KdpE [9]. It has been suggested that sometimes the genes of the two operons are transcribed in only one transcript [9].
Read more >


Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
KdpE Non-Functional   Apo nd nd nd
KdpE-phosphorylated Functional Covalent Holo nd nd nd
Evolutionary Family: OmpR
TFBs length: 12
TFBs symmetry: inverted-repeat
Sensing class: External-Two-component systems
Connectivity class: Local Regulator
Gene name: kdpE
  Genome position: 721056-721733
  Length: 678 bp / 225 aa
Operon name: kdpDE
TU(s) encoding the TF:
Transcription unit        Promoter
kdpDE
 


Regulon       
Regulated gene(s) kdpA, kdpB, kdpC, kdpF
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
The P-type ATPase (P-ATPase) Superfamily (4)
membrane (3)
Regulated operon(s) kdpFABC
First gene in the operon(s) kdpF
Simple and complex regulons KdpE
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)
[KdpE,+](1)


Transcription factor regulation    


Transcription factor binding sites (TFBSs) arrangements
      

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence LeftPos RightPos Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
  KdpE-phosphorylated activator kdpFp Sigma70 -63.0 -91.0 kdpF, kdpA, kdpB, kdpC
cttttgccatTTTTATACTTTTTTTACAccccgcccgc
728904 728921 [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [COMP-HINF-SIMILAR-TO-CONSENSUS], [EXP-DAP-SEQ], [EXP-GSELEX], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS], [EXP-IMP-SITE-MUTATION] C [1], [1], [2], [2], [3], [3], [4]


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
Promoter-target gene evolutionary conservation




Reference(s)    

 [1] Narayanan A., Paul LN., Tomar S., Patil DN., Kumar P., Yernool DA., 2012, Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites., PLoS One 7(1):e30102

 [2] Shimada T., Ogasawara H., Ishihama A., 2018, Single-target regulators form a minor group of transcription factors in Escherichia coli K-12., Nucleic Acids Res 46(8):3921-3936

 [3] Sugiura A., Nakashima K., Tanaka K., Mizuno T., 1992, Clarification of the structural and functional features of the osmoregulated kdp operon of Escherichia coli., Mol Microbiol 6(13):1769-76

 [4] Baumgart LA, Lee JE, Salamov A, Dilworth DJ, Na H, Mingay M, Blow MJ, Zhang Y, Yoshinaga Y, Daum CG, O'Malley RC, 2021, Persistence and plasticity in bacterial gene regulation., Nat Methods, 18(12):1499 10.1038/s41592-021-01312-2

 [5] Ballal A, Basu B, Apte SK, 2007, The Kdp-ATPase system and its regulation., J Biosci, 32(3):559 10.1007/s12038-007-0055-7

 [6] Jung K, Altendorf K, 2002, Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli., J Mol Microbiol Biotechnol, 4(3):223 None

 [7] Altendorf K, Voelkner P, Puppe W, 1994, The sensor kinase KdpD and the response regulator KdpE control expression of the kdpFABC operon in Escherichia coli., Res Microbiol, 145(5-6):374 10.1016/0923-2508(94)90084-1

 [8] Walderhaug MO., Polarek JW., Voelkner P., Daniel JM., Hesse JE., Altendorf K., Epstein W., 1992, KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators., J Bacteriol 174(7):2152-9

 [9] Polarek JW., Williams G., Epstein W., 1992, The products of the kdpDE operon are required for expression of the Kdp ATPase of Escherichia coli., J Bacteriol 174(7):2145-51

 [10] Jung K, Tjaden B, Altendorf K, 1997, Purification, reconstitution, and characterization of KdpD, the turgor sensor of Escherichia coli., J Biol Chem, 272(16):10847 10.1074/jbc.272.16.10847

 [11] Brandon L, Dorus S, Epstein W, Altendorf K, Jung K, 2000, Modulation of KdpD phosphatase implicated in the physiological expression of the kdp ATPase of Escherichia coli., Mol Microbiol, 38(5):1086 10.1046/j.1365-2958.2000.02219.x

 [12] Jung K, Altendorf K, 1998, Truncation of amino acids 12-128 causes deregulation of the phosphatase activity of the sensor kinase KdpD of Escherichia coli., J Biol Chem, 273(28):17406 10.1074/jbc.273.28.17406

 [13] Jung K, Veen M, Altendorf K, 2000, K+ and ionic strength directly influence the autophosphorylation activity of the putative turgor sensor KdpD of Escherichia coli., J Biol Chem, 275(51):40142 10.1074/jbc.M008917200

 [14] Voelkner P, Puppe W, Altendorf K, 1993, Characterization of the KdpD protein, the sensor kinase of the K(+)-translocating Kdp system of Escherichia coli., Eur J Biochem, 217(3):1019 10.1111/j.1432-1033.1993.tb18333.x

 [15] Nakashima K., Sugiura A., Kanamaru K., Mizuno T., 1993, Signal transduction between the two regulatory components involved in the regulation of the kdpABC operon in Escherichia coli: phosphorylation-dependent functioning of the positive regulator, KdpE., Mol Microbiol 7(1):109-16

 [16] Nakashima K, Sugiura A, Momoi H, Mizuno T, 1992, Phosphotransfer signal transduction between two regulatory factors involved in the osmoregulated kdp operon in Escherichia coli., Mol Microbiol, 6(13):1777 10.1111/j.1365-2958.1992.tb01350.x

 [17] Toro-Roman A, Wu T, Stock AM, 2005, A common dimerization interface in bacterial response regulators KdpE and TorR., Protein Sci, 14(12):3077 10.1110/ps.051722805

 [18] Xie M, Wu M, Han A, 2020, Structural insights into the signal transduction mechanism of the K+-sensing two-component system KdpDE., Sci Signal, 13(643):None 10.1126/scisignal.aaz2970

 [19] Heermann R, Weber A, Mayer B, Ott M, Hauser E, Gabriel G, Pirch T, Jung K, 2009, The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress., J Mol Biol, 386(1):134 10.1016/j.jmb.2008.12.007

 [20] Luttmann D., Heermann R., Zimmer B., Hillmann A., Rampp IS., Jung K., Gorke B., 2009, Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli., Mol Microbiol 72(4):978-94

 [21] Epstein W, Walderhaug MO, Polarek JW, Hesse JE, Dorus E, Daniel JM, 1990, The bacterial Kdp K(+)-ATPase and its relation to other transport ATPases, such as the Na+/K(+)- and Ca2(+)-ATPases in higher organisms., Philos Trans R Soc Lond B Biol Sci, 326(1236):479 10.1098/rstb.1990.0026

 [22] Miyake Y., Yamamoto K., 2020, Epistatic Effect of Regulators to the Adaptive Growth of Escherichia coli., Sci Rep 10(1):3661

 [23] Hirakawa H., Nishino K., Hirata T., Yamaguchi A., 2003, Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli., J Bacteriol 185(6):1851-6



RegulonDB